数据科学家易犯的十大编码错误,你中招了吗?
选自 Medium
作者:Norm Niemer
机器之心编译
参与:李诗萌、王淑婷
数据科学家比软件工程师擅长统计,又比统计学家擅长软件工程。听起来牛逼轰轰,事实却是,许多数据科学家有统计学背景,却没有什么软件工程方面的经验,因此在编码时容易犯一些简单的错误。作为一名高级数据科学家,本文作者总结了他在工作中常见数据科学家犯的十大错误。

我是一名高级数据科学家,在 Stackoverflow 的 python 编码中排前 1%,而且还与众多(初级)数据科学家一起工作。下文列出了我常见到的 10 个错误。
没有共享代码中引用的数据
数据科学需要代码和数据。所以为了让其他人能够复现自己做出来的结果,你需要提供代码中涉及的数据。这看起来很简单,但许多人会忘记共享代码中需要的数据。
import?pandas?as?pd
df1?=?pd.read_csv('file-i-dont-have.csv')?#?fails
do_stuff(df)
解决方案:用 d6tpipe 共享代码中的数据文件,或者将数据文件上传到 S3/网页/Google 云等,还可以将数据文件保存到数据库中,以便收件人检索文件(但不要将数据添加到 git 中,这一点后面的内容会讲到)。
硬编码其他人无法访问的路径
和错误 1 类似,如果硬编码其他人无法访问的路径,他们就没法运行你的代码,而且在很多地方都必须要手动修改路径。Booo!
import?pandas?as?pd
df?=?pd.read_csv('/path/i-dont/have/data.csv')?#?fails
do_stuff(df)
#?or?
impor?os
os.chdir('c:\Users\yourname\desktop\python')?#?fails
解决方案:使用相对路径、全局路径配置变量或 d6tpipe,这样其他人就可以轻易访问你的数据了。
将数据和代码混在一起
既然数据科学代码需要数据,为什么不将代码和数据存储在同一个目录中呢?但你运行代码时,这个目录中还会存储图像、报告以及其他垃圾文件。乱成一团!
├──?data.csv
├──?ingest.py
├──?other-data.csv
├──?output.png
├──?report.html
└──?run.py
解决方案:对目录进行分类,比如数据、报告、代码等。参阅 Cookiecutter Data Science 或 d6tflow 项目模板,并用问题 1 中提到的工具存储以及共享数据。
Cookiecutter Data Science:https://drivendata.github.io/cookiecutter-data-science/#directory-structure
d6tflow 项目模板:https://github.com/d6t/d6tflow-template
用 Git 提交数据
大多数人现在都会版本控制他们的代码(如果你没有这么做那就是另一个问题了!)。在共享数据时,可能很容易将数据文件添加到版本控制中。对一些小文件来说这没什么问题。但 git 无法优化数据,尤其是对大型文件而言。
git?add?data.csv
解决方案:使用问题 1 中提到的工具来存储和共享数据。如果你真的需要对数据进行版本控制,请参阅 d6tpipe、DVC 和 Git Large File Storage。
DVC:https://dvc.org/
Git Large File Storage:https://git-lfs.github.com/
写函数而不是 DAG
数据已经讨论得够多了,接下来我们谈谈实际的代码。你在学编程时,首先学的就是函数,数据科学代码主要由一系列线性运行的函数组成。这会引发一些问题,详情请参阅「4 Reasons Why Your Machine Learning Code is Probably Bad。」
地址:https://towardsdatascience.com/4-reasons-why-your-machine-learning-code-is-probably-bad-c291752e4953
def?process_data(data,?parameter):
????data?=?do_stuff(data)
????data.to_pickle('data.pkl')
data?=?pd.read_csv('data.csv')
process_data(data)
df_train?=?pd.read_pickle(df_train)
model?=?sklearn.svm.SVC()
model.fit(df_train.iloc[:,:-1],?df_train['y'])
解决方案:与其用线性链接函数,不如写一组有依赖关系的任务。可以用 d6tflow 或者 airflow。
写 for 循环
和函数一样,for 循环也是你在学代码时最先学的。这种语句易于理解,但运行很慢且过于冗长,这种情况通常表示你不知道用什么替代向量化。
x?=?range(10)
avg?=?sum(x)/len(x);?std?=?math.sqrt(sum((i-avg)**2?for?i?in?x)/len(x));
zscore?=?[(i-avg)/std?for?x]
#?should?be:?scipy.stats.zscore(x)
#?or
groupavg?=?[]
for?i?in?df['g'].unique():
????dfg?=?df[df[g']==i]
????groupavg.append(dfg['g'].mean())
#?should?be:?df.groupby('g').mean()
解决方案:NumPy、SciPy 和 pandas 都有向量化函数,它们可以处理大部分你觉得需要用 for 循环解决的问题。
没有写单元测试
随着数据、参数或者用户输入的改变,你的代码可能会中断,而你有时候可能没注意到这一点。这就会导致错误的输出,如果有人根据你的输出做决策的话,那么错误的数据就会导致错误的决策!
解决方案:用 assert 语句检查数据质量。Pandas 也有相同的测试,d6tstack 可以检查数据的获取,d6tjoin 可以检查数据的连接。检查数据的示例代码如下:
d6tstack:https://github.com/d6t/d6tstack
d6tjoin:https://github.com/d6t/d6tjoin/blob/master/examples-prejoin.ipynb
assert?df['id'].unique().shape[0]?==?len(ids)?#?have?data?for?all?ids?
assert?df.isna().sum()< 0.9?#?catch?missing?values
assert?df.groupby(['g','date']).size().max()?==1?#?no?duplicate?values/date?
assert?d6tjoin.utils.PreJoin([df1,df2],['id','date']).is_all_matched()?#?all?ids?matched?
没有注释代码
我明白你急着做分析。于是你把代码拼凑起来得到结果,把结果交给你的客户或者老板。一周之后他们找到你,问你「你能改掉 xyz 吗?」或「你能更新一下结果吗?」。然后你和自己的代码大眼瞪小眼,既不记得你为什么要这么做,也不记得你做过什么。现在想象一下其他人运行这段代码时的心情。
def?some_complicated_function(data):
????data?=?data[data['column']!='wrong']
????data?=?data.groupby('date').apply(lambda?x:?complicated_stuff(x))
????data?=?data[data['value']< 0.9]
????return?data
解决方案:即便你已经完成了分析,也要花时间注释一下你做过什么。你会感谢自己的,当然其他人会更加感谢你!这样你看起来会更专业!
把数据存成 csv 或 pickle
说回数据,毕竟我们讨论的是数据科学。就像函数和 for 循环一样,CSV 和 pickle 文件也很常用,但它们其实并没有那么好。CSV 不包含模式(schema),所以每个人都必须重新解析数字和日期。Pickle 可以解决这一点,但只能用在 Python 中,而且不能压缩。这两种格式都不适合存储大型数据集。
def?process_data(data,?parameter):
????data?=?do_stuff(data)
????data.to_pickle('data.pkl')
data?=?pd.read_csv('data.csv')
process_data(data)
df_train?=?pd.read_pickle(df_train)
解决方案:用 parquet 或者其他带有数据模式的二进制数据格式,最好还能压缩数据。d6tflow 可以自动将数据输出存储为 parquet,这样你就不用解决这个问题了。
parquet:https://github.com/dask/fastparquet
使用 Jupyter notebook
这个结论还有一些争议——Jupyter notebook 就像 CSV 一样常用。很多人都会用到它们。但这并不能让它们变得更好。Jupyter notebook 助长了上面提到的许多不好的软件工程习惯,特别是:
?
你会把所有文件存在一个目录中;
你写的代码是自上而下运行的,而不是 DAG;
你不会模块化你的代码;
代码难以调试;
代码和输出会混合在一个文件中;
不能很好地进行版本控制。
?
Jupyter notebook 很容易上手,但规模太小。
解决方案:用 pycharm 和/或 spyder。
原文链接:https://medium.com/m/global-identity?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Ftop-10-coding-mistakes-made-by-data-scientists-bb5bc82faaee
本文为机器之心编译,转载请联系本公众号获得授权。
?------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com
关注公众号:拾黑(shiheibook)了解更多
[广告]赞助链接:
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/
关注网络尖刀微信公众号随时掌握互联网精彩
- 1 中共中央政治局召开会议 7904296
- 2 课本上明太祖画像换了 7809607
- 3 外交部回应普京对中印关系评论 7714050
- 4 8.85亿人次受益后 医保又出实招 7618304
- 5 日本记者街头采访找不到中国游客 7523111
- 6 1岁多女童吊环上“开挂” 7423898
- 7 净网:网民造谣汽车造成8杀被查处 7328966
- 8 苟仲文受贿2.36亿余元一审被判死缓 7233224
- 9 2分钟烧到100℃?警惕用电“雷区” 7137147
- 10 寒潮来袭 “速冻”模式如何应对 7040040


![倦倦喵[开学季][开学季]都说很涩的一期 ](https://imgs.knowsafe.com:8087/img/aideep/2021/12/8/7593c5642be0003cdd2b3ade4199c86a.jpg?w=250)




机器之心
